You are not logged in.
Pages: 1
pH Meter
Gist
What does a pH meter measure? An electronic pH meter is used to obtain more accurate pH measurements. A pH meter is an instrument used to measure hydrogen ion activity in solutions - in other words, this instrument measures acidity/alkalinity of a solution.
Summary
pH meter is an electric device used to measure hydrogen-ion activity (acidity or alkalinity) in solution. Fundamentally, a pH meter consists of a voltmeter attached to a pH-responsive electrode and a reference (unvarying) electrode. The pH-responsive electrode is usually glass, and the reference is usually a silver–silver chloride electrode, although a mercury–mercurous chloride (calomel) electrode is sometimes used. When the two electrodes are immersed in a solution, they act as a battery. The glass electrode develops an electric potential (charge) that is directly related to the hydrogen-ion activity in the solution (59.2 millivolts per pH unit at 25 °C [77 °F]), and the voltmeter measures the potential difference between the glass and reference electrodes.
Details
A pH meter is a scientific instrument that measures the hydrogen-ion activity in water-based solutions, indicating its acidity or alkalinity expressed as pH. The pH meter measures the difference in electrical potential between a pH electrode and a reference electrode, and so the pH meter is sometimes referred to as a "potentiometric pH meter". The difference in electrical potential relates to the acidity or pH of the solution. Testing of pH via pH meters (pH-metry) is used in many applications ranging from laboratory experimentation to quality control.
Applications:
The rate and outcome of chemical reactions taking place in water often depends on the acidity of the water, and it is therefore useful to know the acidity of the water, typically measured by means of a pH meter. Knowledge of pH is useful or critical in many situations, including chemical laboratory analyses. pH meters are used for soil measurements in agriculture, water quality for municipal water supplies, swimming pools, environmental remediation; brewing of wine or beer; manufacturing, healthcare and clinical applications such as blood chemistry; and many other applications.
Advances in the instrumentation and in detection have expanded the number of applications in which pH measurements can be conducted. The devices have been miniaturized, enabling direct measurement of pH inside of living cells. In addition to measuring the pH of liquids, specially designed electrodes are available to measure the pH of semi-solid substances, such as foods. These have tips suitable for piercing semi-solids, have electrode materials compatible with ingredients in food, and are resistant to clogging.
Design and use:
Principle of operation
Potentiometric pH meters measure the voltage between two electrodes and display the result converted into the corresponding pH value. They comprise a simple electronic amplifier and a pair of electrodes, or alternatively a combination electrode, and some form of display calibrated in pH units. It usually has a glass electrode and a reference electrode, or a combination electrode. The electrodes, or probes, are inserted into the solution to be tested. pH meters may also be based on the antimony electrode (typically used for rough conditions) or the quinhydrone electrode.
In order to accurately measure the potential difference between the two sides of the glass membrane reference electrode, typically a silver chloride electrode or calomel electrode are required on each side of the membrane. Their purpose is to measure changes in the potential on their respective side. One is built into the glass electrode. The other, which makes contact with the test solution through a porous plug, may be a separate reference electrode or may be built into a combination electrode. The resulting voltage will be the potential difference between the two sides of the glass membrane possibly offset by some difference between the two reference electrodes, that can be compensated for.
The design of the electrodes is the key part: These are rod-like structures usually made of glass, with a bulb containing the sensor at the bottom. The glass electrode for measuring the pH has a glass bulb specifically designed to be selective to hydrogen-ion concentration. On immersion in the solution to be tested, hydrogen ions in the test solution exchange for other positively charged ions on the glass bulb, creating an electrochemical potential across the bulb. The electronic amplifier detects the difference in electrical potential between the two electrodes generated in the measurement and converts the potential difference to pH units. The magnitude of the electrochemical potential across the glass bulb is linearly related to the pH according to the Nernst equation.
The reference electrode is insensitive to the pH of the solution, being composed of a metallic conductor, which connects to the display. This conductor is immersed in an electrolyte solution, typically potassium chloride, which comes into contact with the test solution through a porous ceramic membrane. The display consists of a voltmeter, which displays voltage in units of pH.
On immersion of the glass electrode and the reference electrode in the test solution, an electrical circuit is completed, in which there is a potential difference created and detected by the voltmeter. The circuit can be thought of as going from the conductive element of the reference electrode to the surrounding potassium-chloride solution, through the ceramic membrane to the test solution, the hydrogen-ion-selective glass of the glass electrode, to the solution inside the glass electrode, to the silver of the glass electrode, and finally the voltmeter of the display device. The voltage varies from test solution to test solution depending on the potential difference created by the difference in hydrogen-ion concentrations on each side of the glass membrane between the test solution and the solution inside the glass electrode. All other potential differences in the circuit do not vary with pH and are corrected for by means of the calibration.
For simplicity, many pH meters use a combination probe, constructed with the glass electrode and the reference electrode contained within a single probe.
The pH meter is calibrated with solutions of known pH, typically before each use, to ensure accuracy of measurement. To measure the pH of a solution, the electrodes are used as probes, which are dipped into the test solutions and held there sufficiently long for the hydrogen ions in the test solution to equilibrate with the ions on the surface of the bulb on the glass electrode. This equilibration provides a stable pH measurement.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Pages: 1