Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#51 2023-11-22 22:00:06

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,425

Re: Important Laws/Principles in Physics

43) Special and General Theory of Relativity

Special relativity

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

i) The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration).
ii) The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.

Origins and significance

Special relativity was described by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies". Maxwell's equations of electromagnetism appeared to be incompatible with Newtonian mechanics, and the Michelson–Morley null result failed to detect the Earth's motion against the hypothesized luminiferous aether. These led to the development of the Lorentz transformations, which adjust distances and times for moving objects. Special relativity corrects the hitherto laws of mechanics to handle situations involving all motions and especially those at a speed close to that of light (known as relativistic velocities). Today, special relativity is proven to be the most accurate model of motion at any speed when gravitational and quantum effects are negligible. Even so, the Newtonian model is still valid as a simple and accurate approximation at low velocities (relative to the speed of light), for example, everyday motions on Earth.

Special relativity has a wide range of consequences that have been experimentally verified. They include the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal speed limit, mass–energy equivalence, the speed of causality and the Thomas precession. It has, for example, replaced the conventional notion of an absolute universal time with the notion of a time that is dependent on reference frame and spatial position. Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy, as expressed in the mass–energy equivalence formula

, where c is the speed of light in a vacuum. It also explains how the phenomena of electricity and magnetism are related.

A defining feature of special relativity is the replacement of the Galilean transformations of Newtonian mechanics with the Lorentz transformations. Time and space cannot be defined separately from each other (as was previously thought to be the case). Rather, space and time are interwoven into a single continuum known as "spacetime". Events that occur at the same time for one observer can occur at different times for another.

Until several years later when Einstein developed general relativity, which introduced a curved spacetime to incorporate gravity, the phrase "special relativity" was not used. A translation sometimes used is "restricted relativity"; "special" really means "special case". Some of the work of Albert Einstein in special relativity is built on the earlier work by Hendrik Lorentz and Henri Poincaré. The theory became essentially complete in 1907, with Hermann Minkowski's papers on spacetime.

The theory is "special" in that it only applies in the special case where the spacetime is "flat", that is, where the curvature of spacetime (a consequence of the energy–momentum tensor and representing gravity) is negligible. To correctly accommodate gravity, Einstein formulated general relativity in 1915. Special relativity, contrary to some historical descriptions, does accommodate accelerations as well as accelerating frames of reference.

Just as Galilean relativity is now accepted to be an approximation of special relativity that is valid for low speeds, special relativity is considered an approximation of general relativity that is valid for weak gravitational fields, that is, at a sufficiently small scale (e.g., when tidal forces are negligible) and in conditions of free fall. But general relativity incorporates non-Euclidean geometry to represent gravitational effects as the geometric curvature of spacetime. Special relativity is restricted to the flat spacetime known as Minkowski space. As long as the universe can be modeled as a pseudo-Riemannian manifold, a Lorentz-invariant frame that abides by special relativity can be defined for a sufficiently small neighborhood of each point in this curved spacetime.

Galileo Galilei had already postulated that there is no absolute and well-defined state of rest (no privileged reference frames), a principle now called Galileo's principle of relativity. Einstein extended this principle so that it accounted for the constant speed of light, a phenomenon that had been observed in the Michelson–Morley experiment. He also postulated that it holds for all the laws of physics, including both the laws of mechanics and of electrodynamics.

General Relativity

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalises special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitation in classical physics. These predictions concern the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light, and include gravitational time dilation, gravitational lensing, the gravitational redshift of light, the Shapiro time delay and singularities/black holes. So far, all tests of general relativity have been shown to be in agreement with the theory. The time-dependent solutions of general relativity enable us to talk about the history of the universe and have provided the modern framework for cosmology, thus leading to the discovery of the Big Bang and cosmic microwave background radiation. Despite the introduction of a number of alternative theories, general relativity continues to be the simplest theory consistent with experimental data.

Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity. It is not yet known how gravity can be unified with the three non-gravitational forces: strong, weak and electromagnetic.

Einstein's theory has astrophysical implications, including the prediction of black holes—regions of space in which space and time are distorted in such a way that nothing, not even light, can escape from them. Black holes are the end-state for massive stars. Microquasars and active galactic nuclei are believed to be stellar black holes and supermassive black holes. It also predicts gravitational lensing, where the bending of light results in multiple images of the same distant astronomical phenomenon. Other predictions include the existence of gravitational waves, which have been observed directly by the physics collaboration LIGO and other observatories. In addition, general relativity has provided the base of cosmological models of an expanding universe.

Widely acknowledged as a theory of extraordinary beauty, general relativity has often been described as the most beautiful of all existing physical theories.

(The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart which are capable of detecting a change of less than one ten-thousandth the charge diameter of a proton.

The initial LIGO observatories were funded by the United States National Science Foundation (NSF) and were conceived, built and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected.

The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the United Kingdom's Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council. The improved detectors began operation in 2015. The detection of gravitational waves was reported in 2016 by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration with the international participation of scientists from several universities and research institutions. Scientists involved in the project and the analysis of the data for gravitational-wave astronomy are organized by the LSC, which includes more than 1000 scientists worldwide, as well as 440,000 active Einstein@Home users as of December 2016.)


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#52 2023-12-02 22:28:04

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,425

Re: Important Laws/Principles in Physics

44) Planck's law

In physics, Planck's law (also Planck radiation law ) describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.

At the end of the 19th century, physicists were unable to explain why the observed spectrum of black-body radiation, which by then had been accurately measured, diverged significantly at higher frequencies from that predicted by existing theories. In 1900, German physicist Max Planck heuristically derived a formula for the observed spectrum by assuming that a hypothetical electrically charged oscillator in a cavity that contained black-body radiation could only change its energy in a minimal increment, E, that was proportional to the frequency of its associated electromagnetic wave. While Planck originally regarded the hypothesis of dividing energy into increments as a mathematical artifice, introduced merely to get the correct answer, other physicists including Albert Einstein built on his work, and Planck's insight is now recognized to be of fundamental importance to quantum theory.

The law

Every physical body spontaneously and continuously emits electromagnetic radiation and the spectral radiance of a body, Bν, describes the spectral emissive power per unit area, per unit solid angle and per unit frequency for particular radiation frequencies. The relationship given by Planck's radiation law, given below, shows that with increasing temperature, the total radiated energy of a body increases and the peak of the emitted spectrum shifts to shorter wavelengths. According to Planck's distribution law, the spectral energy density (energy distribution) at given temperature is given by (SI units):


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#53 2024-05-24 22:43:07

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,425

Re: Important Laws/Principles in Physics

45) Raoult's law

Raoult's law : The partial vapour pressure of any volatile component of a solution is the product of vapour pressure of that pure component and the mole fraction of the component in the solution.

Raoult's law is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

Mathematically, Raoult's law for a single component in an ideal solution is stated as


where
is the partial pressure of the component
in the gaseous mixture above the solution,
is the equilibrium vapor pressure of the pure component
, and
is the mole fraction of the component
in the liquid or solid solution.

Where two volatile liquids A and B are mixed with each other to form a solution, the vapor phase consists of both components of the solution. Once the components in the solution have reached equilibrium, the total vapor pressure of the solution can be determined by combining Raoult's law with Dalton's law of partial pressures to give


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB