Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#2 Help Me ! » Initial-value » 2008-06-29 03:40:58

baggins
Replies: 1

Hi everyone,

Just to be sure I did that problem with no major mistakes?

Here is the question and my answer:

Solve the initial-value problem

dy/dx = e^2x + 1/e^2x + 2x +2        (x>0),       y= 3 when x= 0.

Y = ∫     e^2x + 1  dx       General solution
            e^2x + 2x +2   

   
∫ f’(x) dx = In(f(x)) + c           (integration formula)
    f(x)

The integrand is e^2x + 1/e^2x + 2x +2 .
Here the numerator   e^2x + 1 is, except for a constant multiple, the derivative of the denominator  e^2x + 2x +2 .

So we can apply equation with f(x) = e^2x + 2x +2 .
Since f’(x) = 2e^2x+1x, we write the numerator as e^2x + 1= ½(2e^2x+1x) before applying the formula.

Thus we have

∫     e^2x + 1  dx  = 1/2 ∫ 2e^2x+1x dx   
    e^2x + 2x +2              e^2x + 2x +2       

= ½ In(e^2x + 2x + 2) + c       
Where c is an arbitrary constant.

Using the initial condition, y= 3 when x= 0, we obtain

3= ½ In (e^0 + 0 +2) + c = c     

c= 5/7 

y= ½ In (e^2x + 2x +2) + 5/7


I hope it's not too bad:/

#3 Re: Help Me ! » evaluate definite integral » 2008-06-28 21:39:24

Hi luca-deltodesco,

Thanks for your help, how did you write it like this, is there a link on the website on how to use symbols?:)

#4 Help Me ! » evaluate definite integral » 2008-06-27 22:57:38

baggins
Replies: 4

Hi everyone,

I have to evaluate  a definite integral but I'm stuck to finish it


Here is the question and my answer:

(b)          Evaluate      ∫3 on the top and 1 on the bottom( i don't how to write on the keyboard)  follow by x(7x²+5)dx
     
     = [7x³+5] 3 at the top and 1 at the bottom

     = (7x³+5)³ - (7x3+5)^1   

I hope someone understand this, I don't know how to write the limits of integration with my keyboard.rolleyes:

Thanks:)

#5 Re: Help Me ! » derivative of the function using the Composite Rule » 2008-06-25 06:48:25

Thanks again mathsyperson, great help, I need to practise more of them.

#6 Re: Help Me ! » derivative of the function using the Composite Rule » 2008-06-25 03:11:51

Becarefule I type it wrong, the function 'k(x)' is k(x) = e^cos(6x)

#7 Help Me ! » derivative of the function using the Composite Rule » 2008-06-25 03:09:44

baggins
Replies: 3

Hi everyone,

I'm stuck, I'm sure I calculate the function completely wrong. I think cos is right but I don't know how to work the '6x'.
Here is the question and my answer:

    (i) Write down the derivative of the function

                       f(x)= cos(6x).

                         Derivative:

                       f ‘(x)= -sin(6x)
               
                                       
   (ii) Hence, by using the Composite Rule, differentiate the function   

                       k(x) = ecos(6x)

                   Composite rule:       
                                           
                      k ‘(x) = g ‘(f(x)) f ‘(x)                                                            
                               = g ‘(u) f ‘(x)   where u = f(x) = cos(6x)
                                = (eu) (-sin^cos(6x))
                                = e(cos^(6x)) (-sin^cos(6x))
                                = -e sin(^cos(6x))


If someone understand what I did, please help me:/

#8 Re: Help Me ! » derivative of the polynomial function » 2008-06-24 22:43:58

Thanks luca-deltodesco for your help:):D

#9 Help Me ! » derivative of the polynomial function » 2008-06-24 22:12:12

baggins
Replies: 2

Hi Everyone,

Always making  small mistakes in my calculation but unfortunately that make me loose points:(

I would like to know if I didn't make any mistake on that question:

       This question concerns the function
                f(x)= x^3 +3x^2 − 9x+15.

      Find the stationary points of this function:

     The derivative of the polynomial function
         f(x) = x^3 + 3x^2 – 9x + 15

        f ’(x) = (3x^2) + 3(2x) – 9(1)
                = 3x^2 + 6x – 9
                = 3(x^2 + 2x – 3)
      The equation f ’(x) = 0 is equivalent to x^2+2x-3 = 0;
      That is, (x+3)(x-1) = 0
      Which give the stationary points:
      X= -3 and x= 1

Thanks for your help:)

Board footer

Powered by FluxBB